If it's not what You are looking for type in the equation solver your own equation and let us solve it.
0.3+p^2+p=1
We move all terms to the left:
0.3+p^2+p-(1)=0
We add all the numbers together, and all the variables
p^2+p-0.7=0
a = 1; b = 1; c = -0.7;
Δ = b2-4ac
Δ = 12-4·1·(-0.7)
Δ = 3.8
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1)-\sqrt{3.8}}{2*1}=\frac{-1-\sqrt{3.8}}{2} $$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1)+\sqrt{3.8}}{2*1}=\frac{-1+\sqrt{3.8}}{2} $
| 3(2r+4)-4r=4(5r-4)+154 | | 7x+9x=180 | | (3^x)-234=0 | | -13j+4j+1=-8 | | 16/20=12/7x+1 | | t+1=−3 | | 12s+27=172 | | 3^x-234=0 | | 0.75x+16=31 | | 15^2+20^2=x^2 | | 4,2x+3,9=2,6x+39,1 | | 12=2 | | 23^2x+1=16^x-1 | | -2(5+6m)+18=-90 | | 4=2(t-11) | | 10/y=8/28 | | 42x+39=26x+391 | | 8(p-3)+4p=6(2p+1)-3 | | -1=z/3=-7 | | 7(5+2x)+x=64 | | (-7)+b=32 | | 5(4x + 1) = 2x + 77 | | 8(p-3)+4p=6(2p+1)-3 | | -14s+20=-15s | | 2/3x-4.9=55.1 | | 2×32=y-14 | | -99=99f | | 5/7x+1/5=3 | | 4^2+x^2=8^2 | | 5+1/7b=-2* | | 8x+4.5=14.5 | | y=14+2×32 |